Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments.
نویسندگان
چکیده
The retinal protonated Schiff base of bacteriorhodopsin is photoreactive to reducing agents such as NaBH4. In the present work we have studied the effect of different protein hydration levels on the photoreductive reaction, as well as the consequences of preventing isomerization around the critical C13=C14 retinal double bond. It was revealed that the rate of light-induced NaBH4 reaction can be fitted to three phases, between 100 and 87%, from 87 to 35% and below 35% relative humidities (r.h.). The three phases are attributed to three protein regions characterized by different water affinities. Furthermore, it is shown that the PSB reduction reaction is light catalyzed even in artificial pigments derived from retinal analogs, in which isomerization around the C13=C14 double bond is prevented. It is suggested that the protein experiences light-induced conformational alterations that are not associated with C13=C14 double bond isomerization. In the 13-cis locked pigment the rate of reduction reaction is affected by r.h. levels only below 35%. The relatively low r.h. required for withdrawing water from the protein is attributed to the increased protein-water affinity in this specific pigment.
منابع مشابه
Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues.
Artificial bacteriorhodopsin pigments based on synthetic retinal analogues carrying an electron-withdrawing CF3 substituent group were prepared. The effects of CF3 on the spectra, photocycles, and Schiff base pKa values of the pigments were analyzed. A reduction of 5 units in the pKa of the Schiff base is observed when the CF3 substituent is located at the C-13 polyene position, in the vicinity...
متن کاملStructure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle.
The structure of an early M-intermediate of the wild-type bacteriorhodopsin photocycle formed by actinic illumination at 230 K has been determined by x-ray crystallography to a resolution of 2.0 A. Three-dimensional crystals were trapped by illuminating with actinic light at 230 K, followed by quenching in liquid nitrogen. Amide I, amide II, and other infrared absorption bands, recorded from si...
متن کاملSchiff Base Switch II Precedes the Retinal Thermal Isomerization in the Photocycle of Bacteriorhodopsin
In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond ...
متن کاملMolecular dynamics study of bacteriorhodopsin and artificial pigments.
The structure of bacteriorhodopsin based on electron microscopy (EM) studies, as provided in Henderson et al. (1990), is refined using molecular dynamics simulations. The work is based on a previously refined and simulated structure which had added the interhelical loops to the EM model of bR. The present study applies an all-atom description to this structure and constraints to the original He...
متن کاملChromophore distortions in the bacteriorhodopsin photocycle: evolution of the H-C14-C15-H dihedral angle measured by solid-state NMR.
In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemistry and photobiology
دوره 75 6 شماره
صفحات -
تاریخ انتشار 2002